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1 Introduction

Since Modigliani and Miller (1958), (1963) and Miles and Ezzell (1980) the valuation

of corporate tax shields is one of the most prominent components of the Discounted

Cash Flow (DCF) and capital budgeting literature. Event though the tax shield

valuation procedure is a broadly used tool in practice and academia it is subject

to an ongoing and widespread debate. One recent example is the discussion on the

slicing approach to value the tax shield by Liu (2009) and Qi (2011). A broad

literature stream aims at determining tax-adjusted discount rates for the valuation

of the tax shield (see for example Cooper and Nyborg (2008) and Molnár and Nyborg

(2011)). Besides this, there are several articles dealing with misunderstandings about

the correct formulas to value the tax shield (see for example the discussion between

Fernandez (2004), Fieten et al. (2005), Arzac and Glosten (2005) and Cooper and

Nyborg (2006) as well as the more recent discussion between Massari, Roncaglio and

Zanetti (2007) and Dempsey (2011)).

Despite the aforementioned debate the incorporation of risky debt into the tax

shield valuation is not finally resolved. The classic tax shield valuation procedures

presume that the risk of default is satisfyingly incorporated by risk-adjusting the

respective discount factor of the tax shield and controlling for the performed financ-

ing policy (constant debt or leverage). The standard DCF1 literature suggests that

the cost of debt accounts for all possible default risks such as the loss of tax shields

or additional bankruptcy costs. Moreover, the tax shield literature focussing on

the determination of risk adjusted discount rates for valuing the tax shield usually

assumes an exogenously given default without directly modeling it via an explicit de-

fault trigger. This leads to a fundamental drawback, which is that the probability of

default has to be exogenously assumed. As a consequence the derived risk-adjusted

discount rates are not depending on the firm’s endogenous default risk.

The central contribution of this paper is that, we extend the tax shield valuation

1Notable exceptions are for example Koziol (2013) or Couch, Dothan and Wu (2012).
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procedure under the assumption of a constant leverage financing policy as proposed

by Miles and Ezzell (1980) to a generalized setting in which default risk and pos-

sible bankruptcy costs are explicitly incorporated. By setting a default trigger and

relating a potential default to the evolution of the future free cash flows of the firm

we provide a tractable approach for determining period-specific risk-adjusted dis-

count rates. Additionally, we show that the risk properties of the tax shield and

the debtholder’s bond differ. In previous models the value of the tax shield derived

from the classical valuation formulas by Miles and Ezzell (1980) and Arzac and

Glosten (2005) is reported too high. This is the case as the inherent risk of default

of debtholders is transferred one-to-one on the tax shield in these models.

The rest of the paper is organized as follows. In section 2 we describe the basic

model setup and all relevant assumptions. Furthermore, our approach to model

uncertainty through the stochastic diffusion process is described in detail. In section

3 we derive the valuation formula for the risk adjusted discount rates for expected

value of debt and the debt related tax savings. Section 4 provides a numerical

example of our model as well as a sensitivity analysis. Section 5 concludes the

paper.

2 The general model setting

Let (Ω, F , P) be a probability space and [0, T ] a time interval, where T →∞ might

be possible. The available information at time t, with t ∈ [0, T ], is denoted by the

filtration Ft. The market is assumed to be arbitrage free. Furthermore, there exists

an to P equivalent probability measure Q called the risk-neutral probability measure.

Consider a levered firm whose value in t is denoted by V L
t . The value of the levered

firm is according to the adjusted present value approach (APV) identical to the value

of the otherwise identical but unlevered firm V U
t plus the value of the tax shield

V TS
t .2 The firms operations generate in every period t, which usually corresponds

2See for example Myers (1974).
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to one fiscal year, an uncertain free cash flow stream FCFUt . The unlevered cost

of equity are denoted by ru. Debt- and equityholder are faced with the firm’s risk

of bankruptcy; thus, the debtholders receive on outstanding debt Dt in period t a

risk-adjusted (nominal) interest rate YD,t. The risk-free rate rf and the corporate

tax rate τ are certain and constant quantities for all periods.

The firms unlevered free cash flows are assumed to follow the subsequent stochastic

process

dFCFU = µ FCFU dt+ σ FCFU dW, (2.1)

where µ is the expected rate of return, σ the standard deviation and dWt a Brownian

motion on the probability space (Ω, F , P). Equation (2.1) is the continuous time

equivalent of the well known growth assumption in corporate valuation given by

E
[
FCFUt+1|Ft

]
= (1 + g) · FCFUt , (2.2)

where g is the expected growth rate of the free cash flows.

Since the GBM is a stochastic process in continuous time and we only need for

the typical DCF framework discrete or periodical observations (e.g. annual, semi-

annual,...) of the free cash flows we will discuss at this point the time scale in more

detail. As depicted in figure 1 we assume discrete observations, t, t+1, t+2, ..., t+N ,

where each interval is of length ∆t, with ∆t = T−t
N

. Estimates on the free cash flow

values are used for the valuation of the levered firm. This procedure enables us on

the one hand to develop the corresponding valuation equations in the typical DCF

setting and on the other hand to use the computational benefits of a GBM, e.g. the

computational efficiency of a normally distributed random variable.

As outlined in the introduction we will perform a risk-neutral valuation procedure

to avoid ex ante assumptions regarding the discount rates for valuing the levered

firm. It is well known that a GBM under the risk-neutral probability measure Q is
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Figure 1: Time scale with a GBM and discrete observations

given by

dFCFU = rf FCFU dt+ σ FCFUdWQ, (2.3)

where dWQ = dW + ΘGBM and ΘGBM =
µ−rf
σ

. According to the martingale repre-

sentation theorem (see Shreve (2004)) the discounted FCFU -process is a martingale

under Q. This enables us to price any asset or derivative using the risk-neutral val-

uation method. Using this procedure the levered firm value according to the APV

approach under the risk-neural probability measure Q can be determined by

V L
t = V U

t + V TS
t

=
T∑

s=t+1

EQ
[
FCFUs |Ft

]
(1 + rf )s−t

+
T∑

s=t+1

EQ [TSs|Ft]
(1 + rf )s−t

,
(2.4)

where TSt are the periodic specific debt related tax savings in period t.

This equation is valid for any arbitrary financing policy. In order to explicitly state

the (tax shield equation or) periodic specific debt related tax savings it is necessary to

assume a specific financing policy. The DCF literature stream differentiates between

the following (most commonly used) ones:

5



1. Autonomous financing (sometimes referred to as passive financing), where Dt

is a certain (non-stochastic) quantity for all future periods (see Modigliani and

Miller (1963) or Myers (1974)),3 or

2. Financing based on market values of the levered firm (sometimes referred to

as active financing), where the leverage ratio, defined as debt to value ratio

(l =
V Lt
Dt

), is a certain (non-stochastic) quantity for all future periods (see Miles

and Ezzell (1980) and (1985) or Arzac and Glosten (2005)).4

For the remainder of this article we assume the more realistic case of financing

based on market values. This financing policy implicitly assumes that the firm

raises the amount of debt Dt at time t and raises or redeems the difference between

the corresponding debt value Dt+1 in t+ 1, where both amounts of debt are chosen

according to the leverage ratio. Since future amounts of debt are uncertain with

regard to the filtration Ft this implies that (besides the possible risk of bankruptcy)

all future periodic specific debt related tax savings are uncertain as well according

to EQ[TSs|Ft] = τrfEQ[Ds|Ft], with s > t.

3 Debt and tax shield valuation in a Miles/Ezzell environment with default

The valuation of a levered firm subject to a possible default is sensitive to the

proposed assumptions. Assumptions such as the treatment of a default by the tax

authority or assumptions regarding the capital structure after a default must cause

changes in the respective valuation formulas. In order to account for these reality-

based assumptions we carefully discuss the modeling and valuation implications.

For calculating the tax shield value and in turn the risk-adjusted discount rates we

first specify in the subsequent sections the payoffs for the debtholders and the tax

shield. In this section we start with the assumptions about the firm and continue

with those regarding the tax authority.

3The constant debt scenario is a special case of this financing policy.
4The literature stream usually discusses the special case constant leverage.
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Table 1: Payoff of Debtholder and Tax Shield

Payoff States in t+ 1
No Default Default

Debtholder
Nominal interest Free Cash Flow
+ redemption + Remaining
(1 + YD,t)Dt Assets

Tax Shield
Periodic specific -
tax savings
τYD,tDt

As in most capital budgeting settings we will consider a limited liability firm. The

equity holders are not responsible for the liabilities of the levered firm. The earnings

(e.g. EBIT), the investments and the depreciations of a levered firm are identical

to the ones of an otherwise identical unlevered firm (e.g. same business risk). This

implies, that the performed investment policy of the firm and the depreciation rules

of the corresponding accounting authority are independent of the firms level of debt.

As already outlined by Cooper and Nyborg (2008) it is important to explicitly

state assumptions about the tax authorities treatment of a bankrupt firm. In sev-

eral countries the tax legislation charges taxes on debt relief (acquittance). More

commonly, as implicitly assumed by Miles and Ezzell (1985), the tax authority

grants an exception from these tax charges.5

To determine the risk equivalent discount factor for the tax shield, we examine

the debtholder’s payoff and the tax shield as depicted in table 1. The debtholder

either receives the contractually specified debt service (no default) or receives the

remaining assets of the firm (default). For the tax shield payoff we assume that the

firm continues its operations after default all equity financed.

5For example the German tax legislative allows for a tax free cancellation of debt when it ensures
the continuance of the corporation (compare §227 AO, which was recently confirmed by BFH as
of June 14, 2010 – X R 34/08). The US tax authority allows the cancellation of debt income by
several reasons which are e.g. for reorganization under chapter 11 or the taxpayer is insolvent
(for more details see USC § 108 - income from discharge of indebtedness).
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3.1 The value of debt

In this section we explicitly define a default trigger that enables us to determine

the expected debt value under consideration of the debtholder’s payoff. As a strict

consequence we have to distinguish between the contractually fixed interest pay-

ments, i.e. the nominal interest payments on debt, and the expected return for the

debtholders, i.e. the cost of debt.

A levered firm with an outstanding amount of debt Dt and nominal interest pay-

ments of YD,t · Dt redeems (or raises) in t + 1 the amount ∆Dt,t+1 = Dt − Dt+1

of debt thus implying an outstanding amount of debt in t + 1 of Dt+1. The lev-

ered firm has to settle its debt obligations (i.e. interest payments plus redemption

or raise of debt) in t + 1 by its levered free cash flows FCFLt+1. Since the follow-

ing relation between the unlevered and the levered free cash flows is always true6

FCFLt+1 = FCFUt+1 + τ · YD,t ·Dt the levered firm files for bankruptcy if the following

condition holds7

FCFUt+1 < (1− τ) YD,t Dt +Dt −Dt+1 (3.1)

or by rearranging

FCFUt+1 < (1− τ) YD,t Dt + ∆Dt,t+1. (3.2)

The default criterion implies that the firm defaults as soon as it cannot pay the after

tax interests on debt and the debt redemption (if ∆Dt,t+1 > 0) by its unlevered free

cash flows. In particular equation (3.1) reveals that (1− τ) YD,t Dt + Dt has to be

paid by the free cash flows of t+ 1 and the new debt outstanding in t+ 1. However,

this relationship implicitly assumes that the debtholders provide to the firm an

6For the derivation see Appendix A.
7This default criterion can be regarded as default due to illiquidity. Illiquidity is one common
reason for default in realistic scenarios. In the case of illiquidity debtholders such as banks tend
to demand immediate repayment of the overall credit due to a covenant breach.
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debt amount of Dt+1 even in the case of default and thereby ignoring potential

reconsiderations on sides of the debtholders.

This property is not a direct implication of the default criterion. As a matter

of fact this is a direct consequence of the in the DCF approach typically assumed

constant leverage or market value based financing policy. The assumption of this

financing policy, that l is a certain quantity in every future period, has a counter-

intuitive implication: even in the case of default the debtholders provide to the firm

an debt amount of Dt = l · V L
t . For this reason we explicitly assume that after

default the firm continues its operations all equity financed. One possible scenario

would be that the debtholders take over the firm and continue its operations. As a

consequence, the firm pursues a financing policy based on market values until the

firm defaults.

This implies in the case of no default, that Dt is thereby just a linear function of

the unlevered free cash flows and is in any case given by8

EQ [Dt] = l ·
T∑

u=t+1

EQ
[
FCFUu

](
(1 + rf )

(
1− τ ·rf ·l

1+rf

))u−t . (3.3)

At first glance, without forestalling, it might be unreasonable to determine the

debt value based upon a “going-concern” value of the levered firm. Nevertheless, a

tractable DCF like model for valuing the tax shield, that builds upon the assumption

to determine Dt according to the expected “going-concern” value of the levered firm

results in elegant valuation formulas.

In order to capture the negative effects of a possible default we introduce

bankruptcy costs similar to the standard capital structure models (see for example

Leland (1994) or Goldstein, Ju and Leland (2001)). In the case of default a fraction

1 − α of V U
t , with 0 ≤ α ≤ 1 is lost due to indirect bankruptcy costs9, implying

8For the derivation see Appendix B.
9As shown by several empirical studies indirect bankruptcy costs account in comparison to the
direct bankruptcy costs for a significant amount of the value loss of bankrupt firms. See Altman
(1984) or for a more recent study Reimund, Schwetzler and Zainhofer (2009).
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an unlevered firm value after default of V U,B
t+1 = αV U

t . This leaves the debtholders

in case of no default with the full debt service (interest plus redemption) and in

case of default with the free cash flow in t + 1 and the operating business under

consideration of indirect bankruptcy costs. Therefore, the payoff of the debtholder

(PODt+1) is given by

PODt+1 =

 (1 + YD,t) ·Dt , if FCFUt+1 ≥ (1− τ) YD,t Dt + ∆Dt,t+1,

FCFUt+1 + V U,B
t+1 , if FCFUt+1 < (1− τ) YD,t Dt + ∆Dt,t+1.

(3.4)

Equation 3.3 enables us to rewrite (3.2) to

FCFUt+1 <
1

γt+1

(1− τ) YD,t Dt +Dt, (3.5)

where γt+1 = 1 + l ·
T∑

u=t+2

(1 + gQ)u−(t+1)(
(1 + rf )

(
1− τ ·rf ·l

1+rf

))u−(t+1)
. (3.6)

Additionally, in the case of default the payoff can be easily rearranged to

FCFUt+1 + V U,B
t+1 (3.7)

= FCFUt+1 + αV U
t+1 = FCFUt+1

(
1 + α

T∑
u=t+2

(
1 + gQ
1 + rf

)u−(t+1)
)

︸ ︷︷ ︸
=Mt+1

. (3.8)

Thus, the payoff to the debtholders will be the multiple M of the free cash flow

in the case of default.10 Consequently, the default trigger in equation (3.2) can be

compared to the strike of a standard European option: The firm defaults in the case

where FCFUt+1 is smaller than the strike K = 1
γt+1

(1 − τ) YD,t Dt + Dt and in the

remaining case continues its operations. In the case of no default the debtholder

receives the full debt service (interests plus redemption) and in the case of default

10In Appendix C a condition for α will be derived to show when debtholders receive full recovery
after bankruptcy. In the following we consider the possibility of losses for the debtholders due
to bankruptcy.
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the payoff of the debtholder is given by the unlevered free cash flow FCFUt+1 plus the

remaining value of the operating business under consideration of indirect bankruptcy

costs V U,B
t+1 .

In the remainder of this subsection, we derive the value of debt in t considering a

possible default due to illiquidity. For this purpose we combine equation (3.4) and

(3.7) to the present value of the (expected) payoff of the debtholders (3.4), given by

EQ[Dt] = e−Rf
∫ ∞
−∞

PODt+1 fQ(FCFUt+1) d(FCFUt+1). (3.9)

By noting that all values below zero (−∞, 0] are irrelevant for our considerations

and splitting the integral in two parts we may write

EQ[Dt] = e−Rf
∫ ∞
K

(1 + YD,t) ·Dt fQ(FCFUt+1) dFCFUt+1

+ e−Rf
∫ K

0

FCFUt+1 + V U,B
t+1 fQ(FCFUt+1) dFCFUt+1,

(3.10)

where fQ(FCFUt+1) denotes the density function of FCFUt+1. Following Appendix D

the solution of equation (3.10) and therefore the value of debt considering a possible

default and a financing policy based on market values is given by

EQ[Dt] =(1 + YD,t) ·Dt · e−Rf (s−t) · N(d2) +Mt+1 · FCFUt · N (−d1) , (3.11)
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where

d1 =
ln
(

FCFUt
K

)
+
(
Rf + 1

2
σ2
)
· (s− t)

σ
√
s− t

d2 = d1 − σ
√
s− t

Mt+1 =

(
1 + α

T∑
u=t+2

(
1 + gQ
1 + rf

)u−(t+1)
)

K =
1

γt+1

(1− τ) YD,t Dt +Dt

γt+1 = 1 + l ·
T∑

u=t+2

(1 + gQ)u−(t+1)(
(1 + rf )

(
1− τ ·rf ·l

1+rf

))u−(t+1)

s = t+ 1

Rf = ln(1 + rf ) , is the continuous risk free interest rate.

This valuation formula enables us to derive the (nominal) interest YD,t that the

debtholders charges based upon EQ[Dt] = Dt in order to get compensated for the

default risk.

3.2 The payoff of the tax shield

In this section, we first discuss in more detail the payoff of the tax shield for both

the no default and the default case. Second, we derive a valuation equation based

upon our findings which enables us to find the correct discount rate. We assume

the scenario that after default the firm continues its operations all equity financed.

Such a scenario usually occurs by a debt-to-equity swap or through the principles

of the bankruptcy proceedings. Taking these preconditions and the default trigger

outlined in equation (3.1) into account, the payoff of the tax shield is given by

POTSt+1 =

 τ · YD,t ·Dt , if FCFUt+1 ≥ K

0 , if FCFUt+1 < K.
(3.12)
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With this explicit tax shield payoff in the case of default, we imply that the debthold-

ers either continue operating the defaulted firm or sell the operating assets to a new

equity investor. For example after selling the firm to a new equity investor and

restructuring, the firm could continue to pursue a financing policy based on market

values. Nevertheless, the tax shield value for the debt- and equity holders before

restructuring is in the case of default zero. Consequently, the payoff of the tax shield

differs from that of the debtholders.

From the payoff of the tax shield given in (3.12) the present value can be calculated

via

EQ[TSPV,t+1
t ] = e−Rf

∫ ∞
−∞

POTSt+1fQ(FCFUt+1) d(FCFUt+1), (3.13)

where again all values below zero (−∞, 0] are irrelevant for our considerations and

fQ(FCFUt+1) is again the density function of FCFUt+1. After separating the integral

by

EQ[TSPV,t+1
t ] =e−Rf

∫ ∞
K

τ · YD,t ·Dt fQ(FCFUt+1) d(FCFUt+1)

+ e−Rf
∫ K

0

0 fQ(FCFUt+1) d(FCFUt+1),

(3.14)

we can make use of the fact that the second integral has a value of zero. The first

integral is over a constant and has been already derived in appendix D. We obtain

for the value of the tax shield the following relation

EQ[TSPV,t+1
t ] =e−Rf τ · YD,t ·Dt · N(d2), (3.15)

where d2 has been already determined in equation (3.11). This equation for valuing

the tax shield considering default allows us to calculate the risk-adjusted tax-shield

value. The formula accounts for this by using N(d2), the probability that the

firm does not default, multiplied with the periodic specific tax deductible interest

payments based upon the contractually fixed interest rate YD,t. This interest rate
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is determined upon our considerations in section 3.1. By comparing equation (3.15)

with the standard DCF tax shield formula for a financing policy based on market

values (
τYD,tDt
1+YD,t

; see Miles and Ezzell (1980) in combination with Molnár and Nyborg

(2011)), we observe that the tax shield increases with the probability for survival.

4 Implications for the valuation of the tax shield

In this section we determine the impact of a default according to the specified

trigger in (3.1) on the value of the tax shield. We calculate the present value of

debt EQ [Dt] considering financing based on market values and the payoff of the

debtholders. Finally, we compare the calculated value of the tax shield with its

potential values according to the classical tax shield formulas of Miles and Ezzell

(1980) and draw conclusions for the discount rate of the tax shield.

In order to exemplify the impact of default on the value of the tax shield we

provide a numerical example throughout this section. We analyze a firm with a

limited lifetime of T = 15 and an initial free cash flow in t of 100. The growth rate

under Q is equal to the risk-free rate and amounts to 3%, gQ = rf = 0.03. The firm

targets a constant leverage ratio of l = 0.25, which is an average estimate for firms

operating in the G7 states. Additionally, we assume a standard deviation of the

free cash flows of σ = 0.15, depicting thereby a moderate fluctuation of the firm’s

free cash flows. The corporate tax rate is assumed to be constant and amounts to

τ = 35%.

We start our analysis by calculating the value of debt according to (3.3). For

the aforementioned parameters EQ[Dt] amounts to 382.76. It is now possible to

compare the results from (3.3) to that of (3.11), where both equations must strictly

yield the same result. Equation (3.11) incorporates the potential risk of default

and the associated losses. Therefore, the debtholders will be compensated for the

associated default risk by an appropriate contractually fixed interest rate YD,t.

From a technical perspective we notice that we cannot easily rearrange equation

(3.11) for YD,t due to the cumulative normal distributions. Nevertheless, a numerical
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solution can be easily calculated. Table 2 shows for various YD,t ranging from 4.5%

to 8% the implied expected values of debt while the other parameters of the initial

example are kept constant. With increasing YD,t we observe increasing levels of debt.

This important result documents that the default risk due to higher levels of debt

is appropriately compensated by higher contractually fixed interest rates. For the

parameters of our initial example the debtholders would set YD,t = 7.2605%.11

Table 2: Expected value of debt for given YD,t

YD,t K N(d2) N(−d1) EQ[Dt]
8.00 % 88.15 0.8322 0.13 384.48
7.50 % 87.88 0.8373 0.13 383.32
7.00 % 87.61 0.8423 0.12 382.14
6.50 % 87.33 0.8473 0.12 380.93
6.00 % 87.06 0.8521 0.12 379.71
5.50 % 86.79 0.8569 0.11 378.47
5.00 % 86.52 0.8616 0.11 377.21
4.50 % 86.25 0.8662 0.10 375.92

The tax shield value subject to a possible default and loss of future tax shields

given in equation (3.15) amounts to

EQ[TSPV,t+1
t ] =e−0.0296 · 0.35 · 0.072605 · 382.76 · 0.83978 = 7.93. (4.1)

For the parameters of the initial example the standard DCF value of the tax shield

V TS,ME without the explicit modelling of default amounts to

V TS,ME
t =

0.35 · 0.072605 · 382.76

1 + 0.072605
= 9.068. (4.2)

By comparing the calculated tax shield values EQ[TSPV,t+1
t ] and V TS,ME

t we observe

11This solution can be easily obtained via bisection.
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that the standard procedure for valuing tax shields underestimates the consequences

of a possible default.12

In the next step, we calculate the respective discount rate for the tax shield via

the following return equation

rTS =
τYD,tDt

EQ[TSPV,t+1
t ]

− 1. (4.3)

Thereby, we assume that the discount rate is defined as a conditional expected

return. In the example, the resulting discount rate for the tax shield subject to

default is calculated by

rTS =
0.35 · 0.072605 · 382.76

7.93
− 1 = 0.2266. (4.4)

In the remainder of this section, we outline the sensitivity of the pricing algorithm

by varying the parameters leverage (l), the standard deviation of the free cash flows

(σ) and the recovery rate (α). Thereby, we analyze every parameter with respect to

its impact on the level of debt and the contractually fixed interest rate YD,t.

We start with the impact of the leverage. Figure 2 depicts the calculated debt

values and the corresponding promised yields for various leverage ratios. Since the

assumption of a certain (or constant) leverage ratio implies that the value of debt

is a linear derivative of the levered firm value, it is obvious that the total amount

of debt increases with leverage. With increasing total amounts of debt the implied

probability to survive N(d2) becomes smaller and the debtholders demand a higher

promised yield for compensation of the increased default risk.

In the next step of the sensitivity analysis we consider the impact of the volatility

of the free cash flows (see Figure 3). Due to the construction of the financing policy

on market values, Dt = l · V L
t the volatility has no direct impact on the value of the

levered firm and therefore the value of debt is independent of the volatility as well.

12Notice that the application of the tax shield formula according to Sick (1990) (taxes on debt

relief apply) yields a value of
τrfDt

1+rf
= 3.9.
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Figure 2: Resulting YD,t for different choices of leverage l.

Figure 3: Resulting YD,t for different choices of volatility σ.

Even though the value of debt remains unaffected, the contractually fixed interest

rate YD,t increases with respect to the standard deviation. Clearly, this result is

intuitive, a high volatility implies that the probability to survive decreases.
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Figure 4: Resulting YD,t for different choices of the recovery rate α.

In the last step we discuss the impact of the recovery rate α upon the probability

to survive N(d2) and the promised yield YD,t. As mentioned before the value of

debt is independent of α. As depicted in Figure 4 a higher recovery rate leads to

a lower promised yield YD,t. Clearly, in the case of default the expected payoff for

the debtholders increases with respect to α and therefore the risk compensation is

smaller. The recovery rate has an upper boundary (see equation (C.5)), where the

debtholders suffer no loss in the case of the default. For the parameters of this

example the upper boundary αmax amounts to 26%.

5 Conclusion

In this article we derive a general model for tax shield valuation considering the pos-

sibility of a default under financing based on market values. The general formula

models the possibility of a default by explicitly using the default trigger illiquidity.

By doing so, we endogenously determine the possibility of default without imposing

any assumption with respect to an exogenous given probability of default. Based
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upon the probability of default, or inversely the probability to survive, the contrac-

tually fixed interest on debt for compensating the debtholders is computed. This is

important, because the promised yield should fit to the firm’s implied probability

of default for practical valuation purposes. Additionally, we have shown how to

calculate the risk-adjusted discount rate for the valuation of tax shields.

The presented tax shield valuation formula is equal to the standard DCF tax

shield formula for the case of no possibility of default or a firm free of the risk of

default. In this case the promised yield corresponds to the risk free rate.

However, for the case of a risky firm, we have illustrated in a simple DCF setting

how to endogenously determine the probability of default, the implied interest on

debt and the tax shield value subject to default.
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A Derivation of FCFLt

Using the assumptions X (acquittance / remission of debt) and Y (equity financing

ex-post bankruptcy), we derive the relations for TAXL and FCFL. Since we assume

that the tax authority does not impose a tax on a possible acquittance the levered

firm has to pay taxes equivalent to

TAXL
t = τ · (EBITDAt −Deprt − rD ·Dt−1) . (A.1)

By noting that the taxes paid by unlevered firm TAXU only differ by the interest

payments rD ·Dt−1 the levered free cash flows can be calculated by

FCFLt = EBITDAt − INVt − TAXL
t

= EBITDAt − INVt − τ · (EBITDAt −Deprt − rD ·Dt−1)

= EBITDAt − INVt − TAXU
t + τ · rD ·Dt−1

= FCFUt + τ · rD ·Dt−1.

(A.2)

B Derivation of V L
t under Q

In order to determine an expression for the WACC under the risk-neutral probability

measure Q we start with the value of a levered firm under Q:

V L
t =

EQ
[
V L
t+1 + FCFLt+1|Ft

]
1 + rf

.

Substituting FCFLt+1 = FCFUt+1 + τ · rf ·Dt and Dt = l · V L
t and rearranging yields:

V L
t =

EQ
[
V L
t+1 + FCFUt+1|Ft

]
1 + rf

+
τ · rf · l · V L

t

1 + rf
(B.1)

=
EQ
[
V L
t+1 + FCFUt+1|Ft

]
(1 + rf )

(
1− τ ·rf ·l

1+rf

) (B.2)
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By repeating this procedure until time T we are able to determine the following

expression for the levered firm value

V L
t =

T∑
s=t+1

EQ
[
FCFUs

](
(1 + rf )

(
1− τ ·rf ·l

1+rf

))s−t . (B.3)

C The limit of debtholder’s payoff in bankruptcy state

According to equation (3.7) it may be possible that the debtholders receive full

recovery in the states of bankruptcy. The payoff to debtholders can be equal (or

larger) to the outstanding liabilities in equation (3.4). The necessary condition is

FCFUt+1 + V U,B
t+1 ≥ (1 + YD,t) ·Dt.

The constraint can be solved for α:

FCFUt+1 + V U,B
t+1 ≥ (1 + YD,t) ·Dt (C.1)

FCFUt+1 ·

(
1 + α

T∑
u=t+2

(
1 + gQ
1 + rf

)u−(t+1)
)
≥ (1 + YD,t) ·Dt (C.2)

FCFUt+1 ≥
(1 + YD,t) ·Dt(

1 + α
∑T

u=t+2

(
1+gQ
1+rf

)u−(t+1)
) . (C.3)

Now substitute the strike FCFUt+1 = 1
γt+1

(1− τ) YD,t Dt +Dt

1

γt+1

(1− τ) YD,t Dt +Dt ≥
(1 + YD,t) ·Dt(

1 + α
∑T

u=t+2

(
1+gQ
1+rf

)u−(t+1)
) (C.4)

and solve for α

α ≥
(1+YD,t)·Dt·γt+1

(1−τ) YD,t Dt+Dt
− 1∑T

u=t+2

(
1+gQ
1+rf

)u−(t+1)
(C.5)

If the condition holds the debtholders will charge the risk free interest rate YD,t =

rf as they will receive full recovery in bankruptcy and non-bunkruptcy states.
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D Derivation of the integrals

For solving the two integrals given in equation (3.10) it is important to note

1. In the first term (1 +YD,t) ·Dt is in t a constant and therefore can be factored

out.

2. The second integral can be solved by substituting (3.7) in (3.10)

FCFUt+1 + V U,B
t+1 = FCFUt+1 ·Mt+1. (D.1)

Given these simplifications equation (3.10) can be restated for an arbitrary time

span s− t, with s > t, by

EQ[Dt] =(1 + YD,t) ·Dte
−Rf (s−t)

∫ ∞
K

1fQ(X) d(X)

+Mt+1

∫ K

0

Xs fQ(X) d(X).

(D.2)

By acknowledging that Xs is lognormally distributed and can be transformed to a

standardnormal distributed variable Z, by

Z =
lnXs −

(
lnXt +

(
Rf − 1

2
σ2
)

(s− t)
)

σ
√
s− t

∼ N(0, 1), (D.3)

the first term in equation (3.10) can be rearranged using the density of the normal

distribution ϕ(Z) = 1√
2π
e−

Z2

2 to

(1 + YD,t) ·Dte
−Rf (s−t)

∫ ∞
lnK−(lnXt+(Rf− 1

2σ
2)(s−t))

σ
√
s−t

1 ϕ(Z) d(Z) (D.4)

= (1 + YD,t) ·Dte
−Rf (s−t)N

(
ln
(
Xt
K

)
+
(
Rf − 1

2
σ2
)

(s− t)
σ
√
s− t

)
(D.5)

= (1 + YD,t) ·Dte
−Rf (s−t)N(d2) (D.6)

22



The solution of the second term is given by

Mt+1 · e−Rf (s−t)
∫ K

0

Xt fQ(X) d(X) (D.7)

= Mt+1 · e−Rf (s−t)
∫ lnK−(lnXt+(Rf− 1

2σ
2)(s−t))

σ
√
s−t

−∞
eZ·σ

√
s−t+(lnXt+(Rf− 1

2
σ2)(s−t)) ϕ(Z) d(Z)

(D.8)

= Mt+1 · e(lnXt+(− 1
2
σ2)(s−t))

∫ lnK−(lnXt+(Rf− 1
2σ

2)(s−t))
σ
√
s−t

−∞
eZ·σ

√
s−t · 1√

2π
e−

Z2

2 d(Z)

(D.9)

= Mt+1 · e(lnXt)
∫ lnK−(lnXt+(Rf− 1

2σ
2)(s−t))

σ
√
s−t

−∞

1√
2π
e−

(Z−σ
√
s−t)2

2 d(Z) (D.10)

= Mt+1 ·Xt

∫ lnK−(lnXt+(Rf− 1
2σ

2)(s−t))
σ
√
s−t −σ

√
s−t

−∞

1√
2π
e−

(Z)2

2 d(Z) (D.11)

= Mt+1 ·Xt N

 ln
(
K
Xt

)
−
(
Rf − 1

2
σ2
)

(s− t)

σ
√
s− t

− σ
√
s− t

 (D.12)

= Mt+1 ·Xt N

(
−

ln
(
Xt
K

)
+
(
Rf + 1

2
σ2
)

(s− t)
σ
√
s− t

)
(D.13)

= Mt+1 ·Xt N (−d1) (D.14)
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